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Sensor-Aided Learning for Wi-Fi Positioning
with Beacon Channel State Information

Jeongsik Choi, Member, IEEE

Abstract—Because each indoor site has its own radio propaga-
tion characteristics, a site survey process is essential to optimize
a Wi-Fi ranging strategy for range-based positioning solutions.
This study examines an unsupervised learning technique that
autonomously learns an optimal ranging strategy for each site
using Wi-Fi and sensor data accumulated while users access
a positioning application. Using the collected sensor data, the
device trajectory is regenerated, and a Wi-Fi ranging module is
optimized to generate the shape of the estimated trajectory using
Wi-Fi, similar to that obtained from sensors. In this process,
the ranging module learns the way to identify the channel
conditions from each Wi-Fi access point (AP) and produces
ranging results accordingly. Furthermore, we collect the channel
state information (CSI) from beacon frames to investigate the
benefit of using CSI in addition to received signal strength
measurements. With the CSI, the ranging module can identify
diverse channel conditions from each AP and more accurately
generate the reliability of each distance estimate to achieve accu-
rate positioning results. The effectiveness of the proposed learning
technique is verified using a real-time positioning application
implemented on a PC platform [1].

Index Terms—Indoor positioning, channel state information,
neural networks, unsupervised learning, sensor fusion.

I. INTRODUCTION

W ITH the advent of various types of mobile devices,
interest in location-based services has greatly increased

in recent decades. Precise and reliable positioning is a key
technology that enhances the end-user experience and creates
new business opportunities. To achieve high-quality posi-
tioning results, many efforts have been introduced in the
literature [2]–[4]. In particular, there is a great demand for
positioning solutions that rely only on the built-in components
of mobile devices and do not require the installation of
additional infrastructure.

In this context, Wi-Fi has been widely used for locating
mobile devices indoors. Because Wi-Fi access points (APs) are
easy and cost-effective to deploy, many indoor sites already
have dense APs that can be used for locating mobile devices.
Without being associated with an AP, mobile devices can listen
to beacon frames broadcast from nearby APs, thereby having
received signal strength (RSS). For this reason, RSS has been
used as a primary source for positioning solutions based on
either range-based [5]–[8] or fingerprinting methods [9]–[12].
However, the RSS is a single representative value for the cur-
rent channel state, which is insufficient for exploring additional
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useful features observed from the wideband behavior of the
channel.

For this reason, many studies have focused on channel
state information (CSI), which is available with commodity
Wi-Fi devices such as Intel IWL5300 [13] and the Atheros
series [14]. Because CSI provides fine-grained information
about the propagation channel, it can improve the positioning
performance in various ways, such as identifying channel
conditions [15]–[22], extracting features for fingerprinting
methods [23]–[27], and estimating the angle of arrival (AoA)
or time of flight (ToF) of the wireless signal [28]–[33].
Nevertheless, the CSI tools used in these studies capture the
CSI of only high throughput (HT) frames defined in the IEEE
802.11n standard [34]. There are therefore restrictions; the
transmitter must be configured to transmit HT frames, and it is
challenging to collect CSI from multiple APs simultaneously.

To further improve the CSI measurement capability, new
tools have been developed recently. The Nexmon CSI tool
enables the collection of the CSI of Wi-Fi frames transmitted
with an orthogonal frequency division multiplexing (OFDM)
format defined in the 802.11a/g/n/ac standards [35], and the
ESP32 CSI tool captures the CSI of 802.11g/n frames [36].
Intel has also developed a new CSI reporting feature for the
latest Wi-Fi chipsets, such as the Wireless-AC9260/9560 and
Wi-Fi 6 AX200/201 series [37]. Owing to the new CSI tools,
the CSI of beacon frames is available. Without modifying any
setting of existing APs and without being associated with an
AP, CSI from nearby APs can be simultaneously collected
in the same manner as the device collects RSS from beacon
frames.

Although the CSI of beacon frames is available, there are
still challenges: (i) The transmission bandwidth of beacon
frames is 20 MHz, which may not be sufficient to obtain high-
resolution multipath propagation profiles from transmitters.
Therefore, the performance of existing CSI-based processes
may be degraded. (ii) APs and devices are not synchronized for
beacon transmission and reception; thus, distance estimation
based on the ToF of beacon frames can produce incorrect
results. (iii) The amount of available CSI is limited because the
beacon frames are broadcast with a predefined interval (e.g.,
100 ms). Thus, it is difficult to monitor subtle changes in the
channels over a short period of time.

Despite these challenges, we believe that the CSI of beacon
frames still plays an important role in improving the perfor-
mance of RSS-based ranging because it compensates for the
unstable fluctuation nature of RSS using relatively wideband
information about the channel. In addition, the current propa-
gation channel condition can be identified according to the
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Fig. 1. Overview of the proposed sensor-aided learning framework.

frequency selectivity observed in the CSI, and the ranging
performance can be improved by applying different ranging
strategies depending on the identification result. One challenge
is that the indoor propagation channel is too diverse and
complex to be explained using a single model. Therefore,
this paper primarily studies a machine learning approach to
efficiently extract useful features from CSI.

This study is motivated by the fact that many positioning
solutions exploit various types of sensors to estimate the device
trajectory [7], [12], [38]–[40]. In particular, the pedestrian
dead reckoning (PDR) method has been widely deployed for
mobile navigation scenarios where pedestrians access location
services. Using basic sensors incorporated in a mobile device,
the PDR method estimates the trajectory of the device by inte-
grating the separately obtained heading direction and moving
distance of the device [41]–[44]. Because of its simplicity, the
device trajectory obtained using the PDR method is used in
this study, however, the learning technique proposed in this
paper can be applied to other sensor fusion techniques that
provide the device trajectory.

Fig. 1 illustrates an overview of the proposed learning
framework, where a Wi-Fi ranging module is implemented
using a neural network (NN). During the online phase, a
positioning application integrates the Wi-Fi ranging and PDR
outputs to obtain the real-time location of the device. At
the same time, raw Wi-Fi and sensor data are stored in a
database. In the training phase, the collected data are used
to separately estimate the trajectory of the device, and a cost
function is designed to measure the similarity between the
two trajectories. The parameters in the ranging module are
optimized in the direction of making the shape of the estimated
trajectory using Wi-Fi similar to that provided by the PDR
module. In this process, the ranging module autonomously
learns a way to produce accurate ranging results from the
input data. As the cost function does not include any ground
truth information, training data can be collected whenever
users access a positioning application, and the accuracy of the
ranging module can be improved as data accumulate naturally.

The contributions of this study are summarized as follows:
i) We proposed a cost function that evaluates the similarity

of Wi-Fi and sensor trajectories to optimize a ranging
strategy for each site. Because the cost function do not
use the ground truth data, human intervention to perform
a site survey process can be greatly reduced.

ii) We verified the advantage of using the CSI of beacon
frames for Wi-Fi ranging. To this end, the CSI was col-
lected from every beacon frame transmitted from nearby
APs, and a convolutional NN (CNN) was designed to
produce ranging results from the CSI measurements.

iii) To demonstrate the effectiveness of the proposed
method, we implemented a real-time positioning ap-
plication for a PC platform and conducted extensive
experiments in a large-scale indoor office environment
with 59 Wi-Fi APs installed on the ceiling. A real-time
demo video is available online [1].

Organization: Related works are summarized in Section II,
and the background of the CSI and PDR method is discussed
in Section III. In Section IV, a Wi-Fi ranging module using
an NN and positioning module is introduced. In Section V, a
new cost function designed to train the ranging module with
sensor information is presented. The experimental results are
presented in Section VI, and the conclusions are presented in
Section VII.

Notation: A ∈ RN×M denotes an N ×M real matrix (or
vector), where [A](n,m) indicates the (n,m)-th element of the
matrix. IN ∈ RN×N denotes the identity matrix and A =
diag(a1, ..., aN ) ∈ RN×N represents the diagonal matrix with
diagonal elements a1, ..., aN . For a vector a ∈ RN×1, we
define ‖a‖ =

√
aTa. The transpose, inverse, and expectation

operators are denoted by (·)T , (·)−1, and E[·], respectively.

II. RELATED WORKS

We recommend referring to the comprehensive survey pa-
pers mentioned in the Introduction for numerous positioning
solutions proposed in the literature. In this section, we sum-
marize selected papers that are relevant to this study.

Channel condition identification using CSI: Because signal
propagation characteristics vary widely depending on the
presence of a direct path, identifying line-of-sight (LOS) and
non-line-of-sight (NLOS) conditions is essential for improving
the ranging performance using either RSS [22], [45], [46] or
ToF [47] measurements. When a strong LOS path exists in
a multipath propagation channel, the frequency response is
flat over the wideband or the channel gain is stationary over
time. Based on these observations, handcrafted features have
been proposed to identify channel conditions, such as space-
frequency correlation [15], Rician K-factor [16], skewness of
dominant path power or kurtosis of frequency variation [17],
and the variation in the phase of CSI [18]. In addition,
various machine learning architectures have been applied to
extract features from CSI efficiently, such as a recurrent NN
(RNN) [19] and a CNN [20]–[22].

Wi-Fi ranging using CSI: Many approaches have been
proposed to improve the ranging performance using CSI. FILA
calculates a representative value, called effective CSI, by filter-
ing out multipath components, and estimates the distance from
an AP using this value [48]. To further improve the accuracy of
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FILA, the automatic gain control process of the Wi-Fi chipset
was considered in the calculation of the effective CSI [49],
[50]. Similarly, the LOS component can be extracted from CSI
to estimate the distance from an AP [29], [51]. In particular,
CUPID applies different path loss models depending on the
ratio between the power of the LOS component and the RSS
to estimate the distance [29]. In addition, the error sources that
contaminate CSI are mathematically analyzed to improve the
ToF-based ranging performance [33], and an extended Kalman
filter (EKF)-based method was introduced to consider a series
of RSS and CSI measurements over time [52]. Machine
learning approaches have also been introduced to improve the
performance of time-based ranging [22], [53], [54].

Wi-Fi positioning using CSI: As summarized above, CSI
has been used to improve the ranging performance, and thus,
accurate positioning results can be obtained accordingly. In
addition to range-based approaches, CSI can be directly used
to locate devices using the fingerprinting method [23], [26],
[27]. These approaches first process the raw CSI measure-
ments, prepare a radio map, and estimate the position of
the device. Moreover, various machine learning approaches
have been applied to process CSI and extract features effi-
ciently [24], [25], [55]. In particular, CNN architectures have
been used to extract features from CSI images [24], [25], and
an autoencoder architecture was applied in [55]. All machine
learning approaches summarized in this section are based on
a supervised learning technique, which requires the collection
of labeled training data for each indoor environment.

III. BACKGROUND

A. Channel State Information

Under multipath propagation environments, each OFDM
sub-carrier experiences a unique distortion. Thus, the Wi-Fi
receiver performs a channel sounding procedure to measure
the channel coefficient of each sub-carrier, called CSI.

CSI is related to the channel impulse response, which is
expressed by

h(t) =

L−1∑
l=0

clδ(t− τl), (1)

where δ(·) represents the Dirac delta function, and L denotes
the number of multipath components between the transmitter
and receiver. The l-th multipath component is characterized
by a complex channel coefficient and a time delay, which are
denoted by cl and τl, respectively. The baseband frequency
response of sub-carrier n is expressed as

H(fn) =

∫ ∞
−∞

h(t)e−j2πfntdt =

L−1∑
l=0

cle
−j2πfnτl , (2)

where fn = n∆f is the frequency of sub-carrier n, and ∆f
represents the sub-carrier spacing. The measured CSI of sub-
carrier n is expressed as

Ĥ(fn) = H(fn) + νn, (3)

where νn denotes a complex-valued measurement noise for
the sub-carrier n.

Because the main interest in this study is the CSI of
beacon frames, parameters for the legacy OFDM format are
used. The sub-carrier spacing is given by ∆f = 20 MHz/64
= 312.5 kHz, and 48 and 4 sub-carriers are used for data
and pilot transmissions, respectively. Therefore, the CSI tool
can collect the complex frequency response for sub-carriers
with an index n ∈ {−26, ...,−1, 1, ..., 26}. When multiple
antennas are involved in beacon reception, multiple CSI sets
are obtained.

B. Pedestrian Dead Reckoning

This work primarily focuses on a typical mobile navigation
scenario in which users access a positioning application on
their handheld device. Therefore, the PDR method is applied
to estimate the trajectory of the device, which is used as a
reference in the training phase. For other scenarios, such as
a robot is deployed to perform site survey processes, another
appropriate sensor fusion techniques can be applied to obtain
the trajectory. We briefly summarize the PDR procedure,
which is described in detail in [40].

As a first step, the orientation of the device with respect to a
reference frame is obtained using accelerometer and gyroscope
readings [56], [57]. The x-, y-, and z-axes of the reference
frame point in the East, North, and up (ENU) directions
relative to the position of the device on the Earth’s surface.
From the estimated orientation, the heading direction of the
device on the x-y plane of the reference frame can be obtained
by assuming that the device moves in the upward direction
of the screen. We denote φ as the heading direction of the
device. Note that a magnetometer is not used in this study
because of the distortion of the magnetic field in an indoor
environment. Therefore, φ refers to the heading relative to an
arbitrary reference direction on the x-y plane, which is denoted
as φref .

The estimated orientation of the device is also used to
transform the accelerometer readings measured with respect
to the local frame into the reference frame. After the trans-
formation, the z-axis acceleration component captures the
vertical movement pattern of the device on the reference frame,
which is generated when the user is walking. From the series
of vertical acceleration values, a peak followed by a valley
is considered as one step of the user, and the step length
associated with the detected step can be obtained using a non-
linear step length model as follows [41]:

λ = α(apeak − avalley)
1
4 , (4)

where apeak and avalley represent the peak and valley accel-
erations, respectively, and α is a constant coefficient.

According to the step detection results, the position of the
device on the x-y plane is obtained by

p(t) = p(t− 1) + λ(t)u (φ(t) + φref ) , (5)

where p(t) = [xPDR(t), yPDR(t)]T represents the x- and y-
coordinates of the device obtained at sensor time t, and λ(t)
indicates the step length computed using equation (4) when a
valid step is detected at time t and 0 if otherwise. In addition,
φ(t) represents the heading direction obtained at time t, and
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u(φ) = [cosφ, sinφ]T is the moving direction on the x-y
plane corresponding to heading direction φ. In general, the
PDR trajectory obtained from equation (5) differs from the
true trajectory unless the initial position (e.g., p(0)) and the
reference direction are perfectly given.

IV. RANGING AND POSITIONING USING BEACON CSI

A. Assumptions

We consider a positioning scenario where N Wi-Fi APs
are installed on the x-y plane of the reference frame. At each
time step, the device scans all the Wi-Fi channels used by
the APs in the vicinity. The device activates A(≥ 1) receive
antennas for beacon reception, and thus, A sets of RSS and
CSI measurements are available from a single received beacon
frame.

Within a single channel scanning procedure, the device can
capture multiple beacon frames from each AP by increasing
the probing time for each Wi-Fi channel. To address this,
we denote B(≥ 1) as the number of received beacon frames
required for the ranging procedure. When the device receives
fewer than B beacon frames from a certain AP, the ranging
results from that AP are not available. Among the many APs
with available ranging results, the positioning module selects
up to M(≤ N) APs to estimate the position of the device.

We denote z = [x, y]T as the position of the device and
zn = [xn, yn]T as the position of the n-th AP (1 ≤ n ≤ N)
on the x-y plane. Depending on the position of the device, the
selection of nearby M APs for positioning can be different. To
address this, we denote n(k)

m as the index of the m-th selected
AP at time step k (1 ≤ m ≤ M), and define z

(k)
m , z

n
(k)
m

to
refer to the position of the m-th selected AP at time step k.
We assume that the coordinates of all APs are known through
a one-time manual effort or an automated method introduced
in [58].

B. CNN-Based Ranging with Beacon CSI

To estimate distance and the reliability of distance estimate,
which is expressed in terms of standard deviation, we design
a ranging module in this section. The input and output rela-
tionship of the ranging module is expressed as a parametric
function as follows:

R(X ; Θ) =

[
d̂
ŝ

]
, (6)

where X represents the list of measurements obtained from
the received beacon frames, and Θ is the set of all trainable
parameters in the module. The two outputs denoted by d̂
and ŝ are the distance estimate and its standard deviation,
respectively. Note that the ranging module is used to obtain
the ranging results for every AP.

Fig. 2 illustrates the amplitude of the CSI obtained from
20 consecutive beacon frames transmitted from an AP. Two
receive antennas were used in this experiment. Fig. 2(a) and
(c) show the results when the device is stationary under LOS
and NLOS conditions, respectively. The coherence bandwidth
of the channel under the LOS condition is wider than that
under the NLOS condition. When the device is moving, the

-26 -13 0 13 26

Sub-carrier index

0

10

20

30

1
0

 l
o

g
|H

(f
)|

Antenna 1

Antenna 2

(a)

-26 -13 0 13 26

Sub-carrier index

0

10

20

30

1
0

 l
o

g
|H

(f
)|

(b)

-26 -13 0 13 26

Sub-carrier index

0

10

20

30

1
0

 l
o

g
|H

(f
)|

(c)

-26 -13 0 13 26

Sub-carrier index

0

10

20

30

1
0

 l
o

g
|H

(f
)|

(d)

Fig. 2. Amplitude of CSI obtained from 20 beacon frames from an AP for the
following scenarios: (a) The device is stationary under a LOS condition, (b)
the device is moving under a LOS condition, (c) the device is stationary under
an NLOS condition, and (d) the device is moving under an NLOS condition.
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Fig. 3. Examples of one channel CSI input image constructed under: (a) A
LOS condition when the device is stationary, (b) a LOS condition when the
device is moving, (c) an NLOS condition when the device is stationary, and
(d) an NLOS condition when the device is moving.

CSI fluctuates widely over time, as shown in Fig. 2(b) and
(d). Nevertheless, the coherence bandwidth of the CSI of each
beacon frame is relatively wide under the LOS condition.

To produce ranging results from the CSI and RSS measure-
ments, we can include all information in the input layer as

X = {XCSI ,XRSS}, (7)

where XCSI represents the input data constructed using the
CSI. For simplicity, we only consider the amplitude of CSI and
construct XCSI as a two-dimensional image with A channels,
where each channel of the image is generated from B received
CSI using an antenna. Each channel is expressed as a two-
dimensional matrix in RB×52, where each row consists of
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Fig. 4. The ranging module implemented using convolutional neural networks. This module is used to obtain ranging results for every AP.

the amplitude of Ĥ(fn) for n ∈ {−26, ...,−1, 1, ..., 26}.
Furthermore, XRSS represents a matrix in RB×A with RSS
measurements from B beacon frames using A antennas.

Fig. 3 shows one channel of the CSI input image. Fig. 3(a)
and (c) depict the results when the user is stationary under LOS
and NLOS conditions, respectively. Because the measured CSI
is stationary over time, a few vertical stripes can be seen in
both figures and each strip in Fig. 3(a) is wider than each
strip in Fig. 3(c). By contrast, Fig. 3(b) and (d) show the CSI
input image for a scenario in which the user is moving under
LOS and NLOS conditions, respectively. Although the CSI
fluctuates widely, each row of the input image shows different
frequency selectivity for the two scenarios.

Fig. 4 illustrates the proposed ranging architecture. The
CNN layers extract features from the A channels of the CSI
input image. Because the number of collectible beacon frames
from an AP is small in practice (e.g., B ≤ 10), we use a
B×4 sized kernel for the first convolution layer. The output of
the first convolution layer becomes a one-dimensional vector,
and we apply three more convolution layers with 1× 4 sized
kernels. In addition, 64 filters are used for all the convolution
layers, and the 1× 2 max-pooling layers are applied to every
two convolution layers. The output of the CNN layers is
concatenated with the RSS input after the flatten operation.
Finally, three fully-connected (FC) layers, each with 256
hidden nodes, are applied to the concatenated layer.

The distance and standard deviation outputs are produced
from the last FC layer as follows:

d̂ =d̄σ(WdX−1 + bd),

ŝ =s̄σ(WsX−1 + bs), (8)

where X−1 ∈ R256×1 represents the activation vector of the
last hidden layer corresponding to the input layer X . Matrices
Wd and Ws ∈ R256×1 represent the weights between the last
hidden layer and each output, and scalars bd and bs represent
biases. Throughout the NN architecture, the rectified linear
unit (ReLU) is used for activation of every layer except for
the output layer. For output activation, the sigmoid function
σ(·) is applied to specify the upper bounds of the distance and
standard deviation outputs, denoted by d̄ and s̄, respectively.

C. RSS Offset Compensation

The ranging module designed in the previous subsection is
used to obtain ranging results for every AP. However, each
AP may have different radio frequency characteristics, such
as antenna gain and transmission power. To address this, we
introduce a vector of trainable parameters o = [o1, ..., oN ]T ,

where the n-th element refers to the RSS offset of the n-th
AP. To obtain ranging results from the n-th AP, we process the
raw measurements and prepare the input data for the ranging
module as

Xn = {XCSI,n,XRSS,n + on}, (9)

where XCSI,n and XRSS,n represent the raw CSI and RSS
inputs for the n-th AP, respectively. By feeding Xn into the
ranging module, we can obtain the ranging results from the
n-th AP as R(Xn; Θ) = [d̂n, ŝn]T . Note that the offset of each
AP is optimized during the training phase as errors propagate
backward to the input layer of the ranging module.

D. Positioning with Wi-Fi Ranging Results

The ranging results from multiple APs in the vicinity are
used to estimate the position of the device. In this work, we
apply an EKF-based positioning method that achieves accurate
results by taking into account a series of measurements over
time [8]. The unknown state is assumed to be the position of
the device, and the EKF procedure is summarized as follows:

1) Initialization: We initialize the position estimate of the
device as the center of M nearby APs as

ẑ(0) =
1

M

M∑
m=1

z(0)
m , (10)

and the covariance matrix of the initial position estimate as

P(0) = diag
(
s2
x, s

2
y

)
, (11)

where sx and sy represent the standard deviations of the initial
x- and y-coordinate estimates, respectively.

2) State Prediction: At time step k(≥ 1), the EKF predicts
the current state from the previous state based on the state
transition model given by

z(k) = z(k−1) + v∆tu(Φ), (12)

where v represents the moving speed of the device, which
can be assumed to be a constant, and ∆t is the time interval
between the two time steps. Without external information, the
moving direction Φ is assumed to be a uniform random vari-
able in [0, 2π]. Using the state transition model, the predicted
state and its covariance matrix are obtained as

ẑ(k|k−1) = ẑ(k−1),

P(k|k−1) = P(k−1) + Q(k), (13)

where Q(k) = (v∆t)2E[u(Φ)u(Φ)T ] = 1
2 (v∆t)2I2.
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3) State Update: The predicted state is then corrected using
the ranging results. The measurement model is expressed as

d(k) = h(k)(z) + ω(k) =


‖z− z

(k)
1 ‖

...
‖z− z

(k)
M ‖

+ ω(k), (14)

where d(k) = [d̂
(k)
1 , ..., d̂

(k)
M ]T is a vector of distance estimates

from M selected APs at time step k. In addition, ω(k) =

[ω
(k)
1 , ..., ω

(k)
M ]T indicates a vector of ranging errors, which

is modeled as a zero-mean Gaussian random vector with the
covariance matrix of

Λ(k) = E
[
ω(k)(ω(k))T

]
= diag

(
(ŝ

(k)
1 )2, ..., (ŝ

(k)
M )2

)
. (15)

The innovation of the EKF and its covariance matrix are
compuated as

e(k) = d(k) − h(k)(ẑ(k|k−1)),

S(k) = H(k)P(k|k−1)(H(k))T + Λ(k). (16)

Here, H(k) ∈ RM×2 represents the Jacobian matrix of h(k)(·),
which is defined as

H(k) ,
∂h(k)(z)

∂z

∣∣∣
z=ẑ(k|k−1)

. (17)

The Kalman gain is computed as

G(k) = P(k|k−1)(H(k))T (S(k))−1, (18)

and the updated state and its covariance matrix are given by

ẑ(k) = ẑ(k|k−1) + G(k)e(k),

P(k) =
(
I2 −G(k)H(k)

)
P(k|k−1), (19)

respectively. Note that ẑ(k) refers to the estimated position of
the device at time step k, and the estimated trajectory using
Wi-Fi varies widely depending on each output of the ranging
module as the distance and standard deviation estimates are
used in the EKF procedure to compute the innovation e(k) and
the covariance matrix Λ(k), respectively.

V. SENSOR-AIDED LEARNING TECHNIQUE

Fig. 5 provides an overview of the sensor-aided learning
technique, where the blue arrows indicate that the output
depends on the trainable parameters. For the training, the
device trajectory is separately estimated using Wi-Fi and PDR
modules. Then, a cost function that compares the shapes of
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Fig. 6. Example of trajectory estimation results using the Wi-Fi and PDR
modules.

the two trajectories is defined. Because the sampling rate of
the sensors is much faster than the frequency of the Wi-Fi
ranging procedure, we first synchronize the two trajectories
by defining p(k) , p(tk), where tk indicates the sensor time
when the k-th Wi-Fi ranging procedure is performed.

In this section, we design the cost function of a single
training dataset collected during K time steps. In the case
that multiple datasets are available, the same process can
be applied to each dataset, and the overall cost is obtained
by simply taking the average of all the costs. For ease of
exposition, we define Z , {ẑ(k)}Kk=1 as the sequence of
the estimated position of the device using the Wi-Fi module
and P , {p(k)}Kk=1 as the sequence of the PDR output.
In addition, all summation operations used in this section
represent the summation from k = 1 to K.

Fig. 6 shows the trajectory estimation results. Because
the ranging module produces errors, the estimated trajectory
using the Wi-Fi module fluctuates widely. Nevertheless, the
estimated trajectory follows the ground truth path shown in
the figure as the positioning module exploits the true location
of the APs. On the other hand, the PDR module produces a
smoother trajectory because built-in sensors are less affected
by the external environment, and the shape of the trajectory
is similar to that of the ground truth path. However, the PDR
trajectory starts at an arbitrary position, and the direction of
the movement is not aligned with the ground truth path as φref
is randomly determined. In this figure, the PDR trajectory is
generated with the assumption of φref = 0, which may differ
from the true value.

To compare the similarity of the Wi-Fi and PDR trajectories,
we transform the PDR trajectory with a rotation angle and an
offset as follows:

p̃(k) = R(ϕ)p(k) + Ω, 1 ≤ k ≤ K, (20)

where Ω ∈ R2×1 indicates the x- and y-coordinate offsets, and
ϕ is the rotation angle. In addition, R(ϕ) ∈ R2×2 represents
the rotation matrix on the x-y plane, which is defined as

R(ϕ) ,

[
cosϕ − sinϕ
sinϕ cosϕ

]
= cosϕI2 + sinϕĨ2, (21)
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where Ĩ2 is a 2×2 anti-diagonal matrix with [Ĩ2](1,2) = −1 and
[Ĩ2](2,1) = 1. An optimal transformation can be obtained to
minimize the sum squared error between the transformed PDR
output and the estimated trajectory using the Wi-Fi module,
which is given by

L (Z,P;ϕ,Ω) =
∑
k

‖p̃(k) − ẑ(k)‖2. (22)

We use the following lemma to obtain an optimal transforma-
tion.

Lemma 1: An optimal rotation angle and offset that mini-
mize the cost function in equation (22) are derived as

ϕ∗ = π + arctan
Γ

Γ̃
,

Ω∗ =

∑
k ẑ(k) −R(ϕ∗)

∑
k p(k)

K
, (23)

respectively, where Γ and Γ̃ are related to Z and P as follows:

Γ =
(
∑
k ẑ(k))T (

∑
k p(k))

K
−
∑
k

(ẑ(k))Tp(k),

Γ̃ =
(
∑
k ẑ(k))T Ĩ2(

∑
k p(k))

K
−
∑
k

(ẑ(k))T Ĩ2p
(k). (24)

And the error after the transformation is computed as

L(Z,P;ϕ∗,Ω∗) =
∑
k

‖ẑ(k)‖2 +
∑
k

‖p(k)‖2

+
‖
∑
k ẑ(k)‖+ ‖

∑
k p(k)‖

K
− 2
√

Γ2 + Γ̃2. (25)

Proof. See Appendix A.

This lemma explains that if two trajectories are given, one
can be transformed close to the other to compute the cost that
measures the similarity of the shapes of the two trajectories.
Using this cost, we can train the ranging module so that the
shape of the Wi-Fi trajectory becomes similar to that of the
PDR trajectory, which shape is almost the same as that of the
ground truth path. Based on this observation, we can define a
cost function that utilizes sensor information as

Lsen(Z,P) = L(Z,P;ϕ∗,Ω∗), (26)

which is computed using equation (25).
In addition to the above cost function, we can include the

geometric cost function introduced in [8]. This cost function
depends only on the Wi-Fi trajectory as

Lgeo(Z) =

K∑
k=1

M∑
m=1

(
‖ẑ(k) − z(k)

m ‖ − d̂(k)
m

)2

. (27)

By combining the two cost functions, we obtain a unified cost
function for training as

L(Z,P) = µ1Lsen(Z,P) + µ2Lgeo(Z), (28)

where µ1 and µ2 are non-negative constants that balance the
two cost functions. Because the unified cost function depends
on Z and P , where P is fixed as the output of the PDR
module, the gradient of the unified cost function with respect
to every element in Z can be easily computed, and these
gradients propagate to the ranging module to optimize every
trainable parameter.

(a) (b)

Fig. 7. Experimental site and device. (a) Office environment with multiple
Wi-Fi APs installed on the ceiling and (b) laptop equipped with Intel AX200
Wi-Fi chipset and an external USB sensor stick.

VI. EXPERIMENTAL RESULTS

A. Data Collection

We performed measurements in a practical indoor office
environment with 59 Wi-Fi APs installed on the ceiling. A
laptop equipped with an Intel Wi-Fi 6 AX200 chipset and
running Ubuntu 18.04 operating system was used to collect
the training data. We also implemented a real-time positioning
application to collect the training data and demonstrate the
proposed method. Fig. 7 shows pictures of the experiment site
and the device with the real-time application running on the
screen [1].

CSI data collection was performed using the CSI reporting
tool mentioned in the Introduction. We believe that similar
experiments can be performed using Nexmon or ESP32 CSI
tools [35], [36], which can capture the CSI of legacy OFDM
frames. To flexibly allocate the scan time for each channel,
we configured the Wi-Fi interface to the monitor mode that
captures all packet transmissions on a specific channel1, and
activated two receive antennas (i.e., A = 2). In addition, an
external USB sensor stick from Bosch Sensortech was used
to collect accelerometer and gyroscope readings at a sampling
rate of 100 Hz [59]. The collected sensor data were used to
estimate the trajectory of the device using the PDR method
with a predefined step length coefficient of α = 0.55.

The existing APs use three non-overlapping Wi-Fi channels
for the 2.4 GHz frequency band, namely channels 1, 6,
and 11. We therefore allocated 300 ms to each channel to
collect beacon frames transmitted at that channel; thus, a
single ranging and positioning procedure took less than 1 s.
Furthermore, each AP used in this experiment site transmits
four different service set identifiers (SSIDs) on the 2.4 GHz
frequency band, and a beacon for each SSID is broadcast
with a 100 ms interval. Therefore, it was possible to receive
multiple beacon frames from each AP during a single ranging
procedure. The positioning performance was evaluated with
various choices of the number of beacon frames used in the
ranging module (e.g., B = 1, 2, 4, and 8). However, the
performance was almost the same regardless of B. Thus, we
assumed that B = 4 throughout the experiment.

1Without using the monitor mode, the CSI of beacon frames can be
collected by executing an active channel scanning procedure provided by the
iw command. In this case, the Wi-Fi chipset monitors the activity of each
channel for 100 ms.
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Fig. 8. Floor plan of the experiment site.

To simulate several users accessing a positioning application
in practice, six persons participated in the experiment, and
each person collected unlabeled data by naturally walking
around the site for 10 minutes. The collected data were
partitioned into multiple datasets, each corresponding to 100
time steps (i.e., 100 s). After this process, 36 datasets were
generated, with 24 datasets used for training and the remaining
12 datasets used for validation purposes. In addition, we
further collected calibration data by following the calibration
path presented in Fig. 8 to optimize parameters in conventional
ranging methods. However, the calibration data were not used
in the proposed method, and thus, human intervention to
perform such a manual site survey process can be greatly
minimized. Finally, we collected test data by following the
test path to evaluate the ranging and positioning performances.
The total length of the test path is 615 m and it took about
10 minutes to collect the test data.

Throughout the experiment, we used up to M = 5 nearby
APs in the positioning module. Note that the experiment site
has dense APs, and thus, more than five APs were available
for almost every time step. Therefore, we selected the five best
APs depending on the measured RSS values for the validation
and test scenarios. On the other hand, for the training scenario,
each of 24 training datasets was used to generate 10 times
more datasets by randomly selecting five APs among all active
APs at each time step. Therefore, 240 training datasets were
generated, each consisting of 500 ranging results (i.e., 100
time steps × 5 APs).

B. Conventional Ranging Models

For performance comparisons, we considered various rang-
ing scenarios, as summarized in Table I. First, the path loss-
based ranging model estimates the distance from an AP as [5]

d̂PL = d010
RSS(d0)−RSS

10η , (29)

where RSS represents the average of all RSSs measured from
B beacon frames using A antennas, RSS(d0) is the RSS at a
reference distance d0 = 1 m, and η is the path loss exponent.

TABLE I
WI-FI RANGING SCENARIOS

Ranging model Source Training Data
Path loss [5] RSS Calibration data

Polynomial [6] RSS Calibration data
CUPID [29] RSS, CSI Calibration data

FC (unsupervised) [8] RSS Unlabeled data
FC (sensor-aided) RSS Unlabeled data (w/ sensor)

CNN (sensor-aided) RSS, CSI Unlabeled data (w/ sensor)

-80 -70 -60 -50 -40

RSS [dBm]

0

10

20

30

40

50

D
is

ta
n

c
e

 [
m

]

Calibration data

Path loss model

Polynomial model

(a)

0 5 10 15 20

Distance estimate [m]

0

2

4

6

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 [

m
]

Path loss model

Polynomial model

(b)

Fig. 9. Calibration of path loss and polynomial parameters: (a) RSS versus
distance, and (b) distance estimate versus standard deviation.

In addition, the distance from an AP can be estimated using
a quadratic polynomial as [6]

d̂poly = g2RSS
2 + g1RSS + g0, (30)

where g2, g1, and g0 represent the coefficients of the polyno-
mial, which should be chosen appropriately.

The calibration data were used to optimize the parameters
in these models. The parameters were selected to minimize the
normalized mean squared error (NMSE) between the distance
estimate d̂ and the true distance d∗, which is defined as
NMSE = E[((d̂ − d∗)/d∗)2]. The selected parameters for
the path loss model are given by RSS(d0) = −25.8 dBm
and η = 3.9, and those for the polynomial model are given
by g2 = 0.0138, g1 = 1.1642, and g0 = 27.7688. The path
loss and polynomial curves with the selected parameters are
presented as solid lines in Fig. 9(a).

In addition, the standard deviation of each distance estimate
is empirically obtained by taking the standard deviation of the
ranging errors with respect to all data whose distance estimates
are less than 1 m from the target distance estimate. Fig. 9(b)
illustrates the relationship between the estimated distance and
the empirically obtained standard deviation. A linear regres-
sion line was used to make a model ŝPL = 0.1897d̂PL +
0.3672 for the path loss and ŝpoly = 0.1622d̂poly +0.6156 for
the polynomial-based ranging scenarios.

In the same way, we optimized the parameters for the
CUPID model that exploits both RSS and CSI for the ranging
procedure [29]. To this end, the energy of the direct path (EDP)
was extracted from the CSI, and different path loss exponents
were selected depending on the ratio between EDP and RSS to
estimate the distance using the path loss model. The standard
deviation for CUPID was modeled in the same way in the
previous models.
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Fig. 10. Training details of the sensor-aided learning: (a)-(c) Estimated trajectories at epoch 0, 5, and 50, respectively, (d) training and validation cost,
(e) ranging and positioning error with respect to the test data, and (f) trained offset of each AP.

C. Training Phase

We consider two NN-based ranging scenarios in which the
first scenario relies only on RSS measurements. For this case,
we simply deployed FC layers that consist of an input layer
of size 2B (i.e., RSS collected from B beacon frames using
A = 2 receive antennas), followed by two hidden layers, each
with 128 nodes. In addition, we evaluated the performance
of the CNN-based ranging module using the CSI of beacon
frames together with RSS measurements. The maximum dis-
tance estimate and standard deviation were assumed to be
d̄ = 100 m and s̄ = 10 m for all NN-based ranging modules.

We trained the FC layers using the previous unsupervised
learning technique proposed in [8] and the sensor-aided learn-
ing technique to verify the effectiveness of the proposed
learning framework. Unfortunately, the previous unsupervised
learning technique was unable to train the CNN-based ranging
module because of an overfitting issue. Therefore, we trained
the CNN-based ranging module using only the sensor-aided
learning technique. We assumed that (µ1, µ2) = (1, 1) for
sensor-aided learning scenarios, and (µ1, µ2) = (0, 1) for the
previous unsupervised learning scenarios. The Adam optimizer
with a learning rate of 0.001 was used for the training. In
addition, we trained each ranging module with 10 different
initializations and selected the best one with the minimum
validation cost.

Fig. 10 illustrates the details of the sensor-aided learning
procedure. The parameters in the ranging module are ini-
tialized randomly at the beginning. As a result, the Wi-Fi
trajectory produces an incorrect result at epoch 0, as shown
in Fig. 10(a). Accordingly, the PDR trajectory is transformed
close to the Wi-Fi trajectory, and the cost is computed. After
a few training epochs, the Wi-Fi trajectory closely approaches
the test path because the ranging module produces accurate

ranging results, and the transformed PDR trajectory overlaps
the test path, as shown in Fig. 10(b) and (c). Therefore, the
cost computed using equation (26) can be considered to be
equivalent to the error between the Wi-Fi trajectory and the
test path. Fig. 10(d) illustrates that the costs with respect to
the training and validation data decrease with the epoch. As a
result, the ranging and positioning errors with respect to the
test data also decrease with epoch, as shown in Fig. 10(e). In
addition, the offsets of all 59 APs are optimized during the
training phase, as shown in Fig. 10(f).

Fig. 11(a) depicts the cumulative density function (CDF) of
the ranging error. Because every scenario primarily relies on
RSS measurements for the ranging, there was no meaningful
difference observed in the ranging performance. However, an
interesting result is observed in Fig. 11(b). This figure shows
the relationship between the distance and standard deviation
outputs for selected ranging scenarios. The relationship be-
tween the two outputs for the path loss-based ranging scenario
is presented as a straight line, as we modeled it using a
linear regression line. Similarly, the FC-based ranging module
produces always same standard deviation output for a specific
distance estimate.

However, the CNN-based ranging module produces various
standard deviation outputs for the same distance estimate. One
possible scenario is that the ranging module identifies the
channel condition from the CSI of beacon frames and produces
the outputs in different ways depending on the identified
channel condition. For instance, if input data is highly likely
to be observed in an NLOS condition, the ranging module
may produce a high standard deviation output for a distance
estimate to make the positioning module less reliant on this
distance estimate. By doing so, an accurate positioning result
can be achieved. Fig. 11(c) depicts the CDF of the positioning
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Fig. 11. Training results: (a) CDF of ranging error, (b) relationship between distance and standard deviation outputs, and (c) CDF of positioning error when
only Wi-Fi ranging is used in the positioning module.

TABLE II
RANGING AND POSITIONING∗ PERFORMANCES

Ranging model MAE RMSE 90%-tile
[m] [m] [m]

R
an

gi
ng

Path loss 3.019 4.175 6.746
Polynomial 3.011 4.203 6.578

CUPID 2.971 4.111 6.659
FC (unsupervised) 2.717 3.813 6.127
FC (sensor-aided) 2.874 3.882 6.206

CNN (sensor-aided) 2.657 3.602 5.628

Po
si

tio
ni

ng

Path loss 2.887 3.442 5.436
Polynomial 2.851 3.400 5.300

CUPID 2.880 3.411 5.338
FC (unsupervised) 2.967 3.468 5.436
FC (sensor-aided) 2.595 3.079 5.008

CNN (sensor-aided) 2.300 2.626 3.903
∗Positioning performance is based only on Wi-Fi ranging.

Test path
2m error region
CNN (sensor-aided)
FC (sensor-aided)
FC (unsupervised)

Fig. 12. Estimated trajectory using Wi-Fi ranging only.

error. Although all ranging scenarios yielded similar ranging
performance, the CNN-based ranging module outperforms
the existing methods by providing more accurate standard
deviation output for each distance estimate.

Table II summarizes the ranging and positioning perfor-
mances for every ranging scenario. Note that the positioning
performance described in this section indicates the result using

Wi-Fi ranging only. The positioning performance using Wi-
Fi and sensors will be evaluated in the next subsection. The
performance metrics are the mean absolute error (MAE), root
mean squared error (RMSE), and 90th percentile error. The
NN-based ranging scenarios outperform the ranging and posi-
tioning performances of the conventional ranging scenarios,
even through the ranging modules were trained using the
unlabeled training data.

In addition, the positioning performances of the two FC-
based ranging scenarios show the effectiveness of the pro-
posed sensor-aided learning technique. As sensor data was
used in the training phase, every trainable parameter could
be optimized in a more reliable manner, and more accurate
positioning results were achieved, compared to the previous
unsupervised learning technique that does not exploit sensor
data [8]. Moreover, the proposed learning technique could train
the CNN-based ranging module with a much larger size of
trainable parameters and more complex input data compared
to the FC layers, whereas the previous unsupervised learning
technique failed to train such a large network due to overfitting.
According to Table II, the CSI of beacon frames can improve
the average positioning accuracy by 30–60 cm and the 90th
percentile accuracy by 1.1–1.5 m from RSS-based ranging
scenarios. This is a meaningful gain if we remind that the
CSI of beacon frames is collected in the exactly same manner
as the device collects RSS from beacon frames.

Finally, Fig. 12 shows the estimated trajectories using Wi-
Fi ranging only. Because of ranging errors, the estimated
trajectory for every ranging scenario fluctuates widely. There-
fore, we present the trajectories for selected scenario for a
clear figure. The green area represents the 2 m error region,
indicating that any points in this area are less than 2 m from the
closest test path. The estimated trajectory for the CNN-based
ranging scenario produced the best performance in terms of
every performance metric.

D. Online Phase

Once training is completed, the Wi-Fi ranging module
produces distance and standard deviation estimates for all
nearby APs during the online phase. When built-in sensors are
temporally unavailable or a positioning application does not
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Fig. 13. Estimated trajectory using Wi-Fi and sensors.
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Fig. 14. CDF of positioning error using Wi-Fi and sensors.

utilize sensors to improve the battery life of mobile devices, we
can achieve exactly the same performance as that summarized
in Table II. In this subsection, we evaluate the positioning
performance when both Wi-Fi ranging and sensors are used.
Of course, in this case, unlabeled Wi-Fi and sensor data will
be generated and these data can be used to retrain the ranging
module using the sensor-aided learning technique.

One issue is that the heading angle of the device is reported
relative to an arbitrary reference direction φref . According
to the experimental results in [40], the EKF can track the
correct reference direction using Wi-Fi ranging results if it is
initialized well. Therefore, to further improve the reliability of
the initial estimation of the reference direction, we modified
the EKF design such that multiple candidates of reference
directions are considered in the beginning and the best candi-
date is selected depending on the ranging results. The detailed
process is summarized in Appendix B.

Fig. 13 illustrates the estimated trajectory using Wi-Fi
ranging and the PDR method. Similar to Fig. 12, the estimated
trajectories for the selected scenarios are presented for a
clear figure. Because the PDR method provides an accurate
trajectory of the device, it is possible to obtain a smoother
trajectory compared with the positioning results using Wi-Fi
only. Fig. 14 depicts the CDF of the positioning error for every

TABLE III
POSITIONING PERFORMANCE WITH WI-FI RANGING AND SENSORS

Ranging method MAE [m] RMSE [m] 90%-tile [m]
Path loss 1.356 1.552 2.384

Polynomial 1.351 1.529 2.311
CUPID 1.373 1.555 2.340

FC (unsupervised) 1.403 1.543 2.252
FC (sensor-aided) 1.192 1.362 2.034

CNN (sensor-aided) 1.038 1.180 1.787

scenario. Similar to Fig. 11(c), which shows the positioning
performance using Wi-Fi ranging only, the CNN-based ranging
scenario achieves the best positioning performance.

Finally, Table III summarizes the positioning results using
Wi-Fi ranging and sensors. With the PDR method, the posi-
tioning performance of every scenario was improved from the
positioning results using the Wi-Fi module only. In particular,
the CNN-based ranging scenario yields the best performance
for all metrics because it produces precise distance and stan-
dard deviation outputs by identifying the channel condition
from the CSI of beacon frames. Using the CSI of beacon
frames improves the average positioning accuracy and 90th
percentile accuracy by 15–36 cm and 25–60 cm, respectively,
from the RSS-based ranging scenarios.

VII. CONCLUSION

In this paper, we studied an unsupervised learning technique
to optimize a Wi-Fi ranging module using the sensor data
generated in a mobile device. Because the PDR method
provides an accurate device trajectory, which shape is almost
same as that of the ground truth path, the output of the PDR
module could be used as a reference in the training phase.
With the proposed cost function that measures the similarity
between the Wi-Fi and PDR trajectories, the ranging module
autonomously learned how to identify the current channel
condition and produce accurate ranging outputs accordingly. In
this way, the proposed learning technique could significantly
minimize human intervention for performing a site survey
process. This paper also verified the benefit of using the CSI
of beacon frames for Wi-Fi ranging. As the CSI identifies the
channel condition and produces an accurate standard deviation
output of each distance estimate, the positioning performance
could be improved over using RSS alone. We believe that the
CSI can improve the ranging and positioning performances in
more complicated indoor environments.

APPENDIX A
PROOF OF LEMMA 1

An offset that minimizes the cost function in equation (22)
should satisfy the following relationship:

∂L(Z,P;ϕ,Ω)

∂Ω
=
∑
k

2(p̃(k) − ẑ(k)) = [0, 0]T . (31)

From the above relationship, an optimal offset is derived as

Ω∗(ϕ) =
1

K

∑
k

(
ẑ(k) −R(ϕ)p(k)

)
. (32)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3138850

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



12

Note that the optimal offset depends on the rotation angle;
thus, it is expressed as a function of ϕ. If we substitute the
optimal offset into the original cost function (22), we obtain
the following relationship:

L(Z,P;ϕ,Ω∗(ϕ)) =
∑
k

‖ẑ(k)‖2 +
∑
k

‖p(k)‖2

− 1

K
‖
∑
k

ẑ(k)‖2 − 1

K
‖
∑
k

p(k)‖2 + 2L(ϕ), (33)

where L(ϕ) contains all terms related to the rotation angle ϕ,
which is given by

L(ϕ) =

(∑
k ẑ(k)

)T
R(ϕ)

(∑
k p(k)

)
K

−
∑
k

(ẑ(k))TR(ϕ)p(k).

(34)
Using equation (21) and the symbols defined in (24), the

above equation can be rewritten as

L(ϕ) = Γ cosϕ+ Γ̃ sinϕ, (35)

and it satisfies the following inequality:

L(ϕ) =
√

Γ2 + Γ̃2 cos(ϕ− ψ) ≥ −
√

Γ2 + Γ̃2, (36)

where ψ = arctan Γ
Γ̃

. An equality condition for this inequality
is given as ϕ − ψ = π. Therefore, an optimal angle that
minimizes the original cost function is expressed as

ϕ∗ = π + arctan
Γ

Γ̃
, (37)

and the optimal offset is accordingly determined as Ω∗ =
Ω(ϕ∗). The minimum value of the cost function can be ob-
tained from equation (33) by replacing L(ϕ) with its minimum
value −

√
Γ2 + Γ̃2.

APPENDIX B
POSITIONING WITH WI-FI RANGING AND SENSORS

To obtain the correct moving direction of the device, the
reference direction should be estimated. To this end, we
include the unknown reference direction φref in the state as

ζ = [zT , φref ]T = [x, y, φref ]T . (38)

Since the reference direction can be any direction in the x-y
plane, we simultaneously consider multiple initializations of
the state in the beginning, similar to the particle filter [60].
Once the estimated reference direction converges to a cer-
tain value, we consider only a single state to reduce the
computational complexity. The proposed EKF procedure is
summarized as follows.

1) Initialization: We consider C candidates of the EKF state,
and the i-th candidate is initialized as

ζ̂
(0)

i = [(ẑ(0))T , φ̂
(0)
ref,i]

T , 1 ≤ i ≤ C, (39)

where ẑ(0) is the same as in equation (10), and φ̂(0)
ref,i = 2πi

C
is initial reference direction estimate of the i-th candidate. In
addition, the covariance matrix of ζ̂

(0)

i is initialized as

P̃
(0)
i = diag

(
s2
x, s

2
y, s

2
φ

)
, (40)

where sφ is the standard deviation of initial reference direction
estimate.

2) State Prediction: The state transition model is given by

ζ(k) = f̃(ζ(k−1),∆p(k)), (41)

where ∆p(k) = p(k)−p(k−1) represents the movement of the
device reported from the PDR module with the assumption
that φref = 0. The relationship between the elements in the
state is given by

z(k) = z(k−1) + R(−φ(k−1)
ref )∆p(k), φ

(k)
ref = φ

(k−1)
ref . (42)

Using the state transition model, the predicted state of the i-th
candidate is obtained as

ζ̂
(k|k−1)

i = f̃(ζ̂
(k−1)

i ,∆p(k)), (43)

and its covariance matrix is updated accordingly as

P̃
(k|k−1)
i = F̃

(k)
i P̃

(k−1)
i (F̃

(k)
i )T , (44)

where F̃
(k)
i ∈ R3×3 represents the Jacobian matrix defined as

F̃
(k)
i ,

∂ f̃(ζ,∆p(k))

∂ζ

∣∣∣
ζ=ζ̂

(k−1)
i

. (45)

3) State Update: The measurement model is expressed by

d(k) = h̃(k)(ζ(k)) + ω(k) = h(k)(z(k)) + ω(k), (46)

where h(k)(·) and ω(k) are defined in equation (14). The
innovation of the i-th candidate and its covariance matrix are
given by

ẽ
(k)
i = d(k) − h̃(k)(ζ̂

(k|k−1)

i ),

S̃
(k)
i = H̃

(k)
i P̃

(k|k−1)
i (H̃

(k)
i )T + Λ(k), (47)

respectively. Here, H̃
(k)
i ∈ RN×3 represents the Jacobian

matrix defined as

H̃
(k)
i ,

∂h̃(k)(ζ)

∂ζ

∣∣∣
ζ=ζ̂

(k|k−1)
i

. (48)

The remaining processes are similar to those described in Sec-
tion IV-D. The Kalman gain, updated state, and its covariance
matrix of the i-th candidate are calculated as

G̃
(k)
i = P̃

(k|k−1)
i (H̃

(k)
i )T (S̃

(k)
i )−1,

ζ̂
(k)

= ζ̂
(k|k−1)

+ G̃
(k)
i ẽ

(k)
i ,

P̃
(k)
i =

(
I3 − G̃

(k)
i H̃

(k)
i

)
P̃

(k)
i . (49)

4) Best Candidate Selection: Once the EKF updates the
state of every candidate using the latest measurement results,
the best candidate is selected based on the innovation (or
accumulated innovation) of each candidate as

i∗ = argmin
i
‖ẽ(k)
i ‖

2. (50)

Then, the state of the selected candidate ζ̂
(k)

i∗ is reported as the
state estimate of the device at time step k, where the first two
elements are the x- and y-coordinates, and the last element is
the reference direction. After a sufficient number of time steps
(e.g., 10-20 time steps), we only update the single candidate
that was selected as the best.
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